1776=-16t^2+2717

Simple and best practice solution for 1776=-16t^2+2717 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1776=-16t^2+2717 equation:



1776=-16t^2+2717
We move all terms to the left:
1776-(-16t^2+2717)=0
We get rid of parentheses
16t^2-2717+1776=0
We add all the numbers together, and all the variables
16t^2-941=0
a = 16; b = 0; c = -941;
Δ = b2-4ac
Δ = 02-4·16·(-941)
Δ = 60224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60224}=\sqrt{64*941}=\sqrt{64}*\sqrt{941}=8\sqrt{941}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{941}}{2*16}=\frac{0-8\sqrt{941}}{32} =-\frac{8\sqrt{941}}{32} =-\frac{\sqrt{941}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{941}}{2*16}=\frac{0+8\sqrt{941}}{32} =\frac{8\sqrt{941}}{32} =\frac{\sqrt{941}}{4} $

See similar equations:

| v+5.25=9.14 | | 8x-18+4x-4+58=180 | | -2.2-6x=13.4 | | h+8÷2=3 | | 4/3t=5 | | 5x-1=10x+2 | | 7(x-3)+5=6x-4 | | 19d−13d+2d−4d=4 | | 2x+-6=-2(x-3) | | x+x+2+x+3=62 | | 4x^2+126x+545=0 | | 17+3j=14 | | 2g+4g=6 | | 8s=s+504 | | 4-5/2(10z)=1 | | 18y=36+9y | | 5x+4(2x-3)=14 | | 2.4d+22=4d | | x^2-x-650=0 | | 6(x-5)+8=6x-21 | | 4(x/4+1/2)+x=2(x+3) | | E-9=5e= | | 18/12=h/32 | | 266=-2r | | w^2=42 | | 1.75+10=3.5x-16.25 | | 38/8x=15/6 | | F(34)=3x+19 | | 35/8x=15/16 | | 7-2(10x-3)=33 | | 2|4x-1|+1=11 | | 8x+10-3x=8x+4 |

Equations solver categories